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This article presents a novel implementation of
a real-time, generative model of musical tension.
We contextualize this design in an application
called the Accessible Aquarium Project, which aims
to sonify visually dynamic experiences through
generative music. As a result, our algorithm utilizes
real-time manipulation of musical elements in order
to continuously and dynamically represent visual
information. To effectively generate music, the
model combines low-level elements (such as pitch
height, note density, and panning) with high-level
features (such as melodic attraction) and aspects of
musical tension (such as harmonic expectancy).

We begin with the goals and challenges addressed
throughout the project, and continue by describing
the project’s contribution in, and comparison
to, related work. The article then discusses
how the project’s generative features direct the
manipulation of musical tension. We then describe
our technical choices, such as the use of Fred
Lerdahl’s formulas for analysis of tension in music
(Lerdahl 2001) as a model for generative tension
control, and our implementation of these ideas. The
article demonstrates the correlation between our
generative engine and cognitive theory, and details
the incorporation of input variables as facilitators of
low- and high-level mappings of visual information.
We conclude with a description of a user study,
as well as self-evaluation of our work, and discuss
prospective future work, including improvements
to our current modeling method and developments
in additional high-level percepts.

Previous Work

After originating in the early 1950s, computer-based
generative music branched into several different
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directions. The probabilistic generative approach we
take in this project can be related to the pioneering
work of Lejaren Hiller and Leonard Isaacson, who
premiered their algorithmic composition Illiac
Suite, for string quartet, in 1957 (Belzer, Holzman,
and Kent 1981). One of the techniques that Hiller and
Isaacson used was the Monte Carlo method, where,
after randomly generating a note, an algorithm
tested it against a set of compositional rules. If
the note passed the test, the algorithm accepted it
and began generating the next note. If the proposed
note failed the test, the algorithm erased it and
generated a new note that was again tested by the
rules. Although this approach produced melodic and
even contrapuntal examples that followed certain
voice leading principles, this algorithm had no
higher-level model for the structure of the piece.

Our approach is also informed by David Cope’s
Experiments in Musical Intelligence, which sought
to capture both high- and low-level features of
compositions in order to generate stylistically
authentic reinventions of music. His early work in
this field, in the 1980s, revolved around the concept
of defining a set of heuristics for particular genres of
music and developing algorithms to produce music
that recreates these styles. By Cope’s own account,
these early experiments resulted in “vanilla” music
that technically followed predetermined rules,
yet lacked ”musical energy” (Cope 1991). His
succeeding work built on this research with two
new premises: every composition had a unique set
of rules, and an algorithm determined this set of
rules autonomously. This was in contrast to his
previous implementation, where a human realized
the rule set. This work ultimately relies on pattern
recognition for analysis and recombinancy for
synthesis, in an effort to create new musical material
from pre-existing compositions. Although this
implementation produces effective reconstructions
true to the form of the original composition, it does
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not have the ability to generate music in real time
(Cope 1991).

Belinda Thom and François Pachet each devel-
oped software that addressed the challenges of
real-time generative algorithms with authentic
musicality. In 2001, Thom completed the first
generation of Band-Out-of-the-Box (BoB; Thom
2001). Her work relies on two models for improvi-
sational learning. First, with previous knowledge
of the work’s harmonic structure, an offline algo-
rithm listens to solo improvisations and archives
probabilistic information into histograms. Then,
in real time, BoB analyzes a human player’s solo
improvisation for modal content. Based on this
content and the information learned offline, BoB
then generates its own solo improvisation. From
here, in the classic jazz tradition, both human
and computer trade fours (each taking turns in-
dividually improvising for four bars of music)
for the remainder of the performance. Although
BoB provides real-time improvisation and does
so in a nearly human manner, the previously de-
termined harmonic structure limits the work’s
versatility. Pachet’s Continuator (Pachet 2002), on
the other hand, builds on harmonic and melodic
content from human performances to generate
improvisational responses. The Continuator em-
ploys a series of Markov chains to uniquely de-
fine voice leading used throughout a segment
of human improvisation. These chains, com-
bined with the detection of the improvisation’s
chord content (based on discrete time segmen-
tation of note clusters), allow the algorithm to
seamlessly continue and build upon human perfor-
mance.

Similar to all of these projects, our algorithm
uses weighted probabilities to generate music.
In the tradition of Pachet and Thom, we use a
real-time generative algorithm. Unlike Thom’s
BoB and Pachet’s Continuator,however, which
rely heavily on live human performance to drive
their real-time generation, our autonomous process
uses parameters determined by dynamic visual
information (specifically, the movement of fish
in an aquarium) as input. In addition, our work
develops previously unexplored areas of generative
musical tension.

Design

A stable groundwork of relatively independent mod-
ules, capable of continued additions and evolution,
was our primary design goal. To this end, our design
focused on the development of a simple yet robust
algorithm. It is simple in that the design does not
rely on a complex network of rules and conditions;
it is robust in that the music produced by the algo-
rithm should be capable of effectively representing a
diversity of musical gestures. In order to permit our
music system to operate in real time, we designed
and implemented the generative components in
Max/MSP. Our design consists of three major com-
ponents: pitch-, rhythm-, and harmony-generation
modules, as shown in Figure 1. The three modules
interact to generate the notes of a single-voice
melody. Rhythm generation (which determines the
onset time of the notes) triggers pitch generation
(which determines the pitch based on the current
state of harmony generation). Output from the har-
mony module informs pitch selection by generating
chords that contain “anchoring” tones, or tones to
which pitches are attracted. This will be explained
in further detail subsequently. All three modules
behave as state machines, relying on feedback of the
previous state to determine the next state.

In the context of applying the generative algo-
rithm for sonification, we drive these generative
modules with input from computer-vision-tracked
fish. Our system uses OpenCV (Agam 2006), an
open-source library of image-processing algorithms
designed for computer-vision applications. With
images from a single Prosillica camera, the system
works with models of fish, based on their general
size, shape, and color. This allows the system to
effectively identify and track each fish’s independent
movement. Using this data, our generative music
algorithm represents the experience of viewing the
aquarium.

In order to map both low- and high-level visual
parameters to musical parameters, we segmented
the various attributes of the visual information we
wanted to represent. At the lowest level, we decided
to convey simple location-based information such as
the position of a fish at any given time. Additionally,
we wanted the sonification to depict gestural
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Figure 1. The interaction
between rhythm-, pitch-,
and harmony-generation
modules used to generate
the next note.

information about their movements by mapping
the speed of their gestures to the rhythms of
the generated music. With respect to higher-level
features, we decided to represent (1) the general
ambiance in the aquarium by changes in harmonic
expectancy, and (2) individual behavior, such as
predictable or erratic swimming patterns of the fish,
by relative melodic tension. The latter led to the
design and application of the generative tension
algorithm described in this article.

Implementation

We divide the task of implementation into tracking
visual tension and mapping this tracking to the
generation of music.

Tracking Visual Tension

One of our sonification goals was mapping visual
tension to musical tension. In order to detect
visual tension, we developed a measurement of the
flow of fish movement. This calculation assigns
lower numbers to consistent movements and
higher numbers to erratic movements. We define

visual gestures involving multiple rapid changes
in direction as erratic and unexpected behavior.
A component was developed to detect directional
information and reveal the nature of the fishes’
gestures.

The first difference of each x and y coordinate
indicates a direction vector. Comparing this direc-
tion vector to the previous one reveals whether the
tracked fish has changed direction. The summa-
tion of the number of changes in the tracked fish’s
direction over a given period of time provides the
expectancy of its movements. In particular, we use a
running sum over a period of three seconds. A max-
imum threshold of ten changes in direction, across
the running sum, is chosen to indicate a maximum
visual tension level, and zero changes in direction
is chosen to indicate a minimum visual tension
level. These visual tension values map directly and
linearly to the input tension values of the generative
music tension algorithm.

The sonic tension levels (converted from the
visual tension levels) influence the generation
of harmonic, melodic, and rhythmic features.
Thus, as the tracked fish changes from flowing
movements to disjunct movements, the melody
corresponding to that fish changes from less to more
tense.
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Figure 2. Rhythm
generation based on
tension level and previous
inter-onset interval.

Rhythm Generation

We based the rhythm generation module on a
model proposed by Desain and Honing (2002)
for analysis of rhythmic stability. Their work
demonstrated the relationship between rhythmic
stability and the bounds between contiguous inter-
onset intervals (IOIs). In particular, they showed
direct proportionality between the complexity of
ratios between contiguous durations and relative
rhythmic stability.

Extending the concept for analyzing stability into
a predictive model, we implemented a method for
rhythmic generation. In our predictive implementa-
tion, the algorithm refers to previous IOIs to inform
the generation of future onsets, as shown in Figure 2.
Specifically, provided a high or low input tension
level, the algorithm accordingly gives preference to
future onsets that form either complex or simple
ratios, respectively, with the previous IOI.

The onset prediction relies on a lookup table in
order to pseudo-randomly generate future onsets.
Its lookup table includes a list of ratios arranged
according to complexity, where ratios such as 1/2
and 2/1 occur low on the list, whereas 9/2 and 2/9
occur significantly higher. Influencing the pseudo-
random generation, high input tension values give
weight to ratios high on the list, and, vice versa, low
tension values give weight to lower ratios.

In our sonification context, we continuously map
the speed of the fish movements to the note density,
as shown in Figure 3.

In this case, the algorithm combines the note
density mapping with the rhythmic stability

prediction. To do so, the algorithm first considers
the influence of the speed mapping. This determines
the relative note density. The onset generation then
pseudo-randomly generates the next onset with a
more or less complex ratio between IOIs, but also
weights the lookup table probabilities based on
distance from the relative note density. As such, a
fish’s speed maps directly to the density of notes,
and the visual tension maps to the input tension
value of rhythmic stability (as described earlier).

Harmony Generation

Harmony refers to the pitch relationships between
groups of notes that are simultaneous or close
together in time, and it typically governs the choice
of pitches in simultaneous, independent melodies
(polyphony). The harmonies generated by our
algorithm influence the movement of each melody.
As we will explain in the Melody Generation
section, the notes rely on attraction to harmonic
anchoring tones. In stable conditions, melodies
move towards the harmonic tones.

As listeners, we have expectations about the
movement from one harmony to the next. For
years, researchers have studied these expectations.
Through subjective and physiological response
studies, many have found a correlation between
harmonic expectations and chords related by the
circle of fifths (see Figure 4), a theoretical model that
orders pitches according to a regular interval shift of
seven semitones (or five diatonic scale steps) (Justus
and Bharucha 2001; Steinbeis, Koelsch, Sloboda
2006).

Similar to the rhythm-generation module, har-
mony generation depends on a lookup table to
generate the next harmony. We wanted to limit the
scope of the harmonic possibilities in order to rely
on a simple model of harmonic expectation. In doing
so, we limited the lookup table to diatonic triads
of a major scale. We ordered the table according to
expectation. Based on the last harmony generated,
we calculate expectation from movement on the
circle of fifths. Low values on the table—values that
are more expected—correspond to small movements
on the circle of fifths. Higher values, relating to
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Figure 3. Mapping speed to
note density.

Figure 3.

Figure 4. The circle of
fifths, a theoretical model
of harmonic relationships.

Figure 4.

more unexpected and therefore tense harmonic
shifts, correspond to large movements on the circle.

A harmonic tension value influences the gener-
ation of the next harmony. Again, as with rhythm
generation, higher tension values weight the prob-
ability of generating a more unexpected harmony.
Conversely, low tension values increase the chance
of the algorithm generating a low table value, an
expected harmony.

Returning to our sonification example, we drive
the harmonic tension value with a global visual
tension value. As discussed in the Tracking Visual
Tension section, the algorithm derives local tension
values from the movements of each tracked fish.
By summing all of these local values, the system
generates a global visual tension value, which
essentially describes the overall activity in the
aquarium. As harmony generation globally affects
all of the individual local melodies corresponding to
each fish, we map the global visual tension to the
harmonic tension value.

Melody Generation

We developed a method for pitch generation that
could controllably change melodic stability and
tension in real time. We based our method of melody
generation on Fred Lerdahl’s theories of tonal pitch
space (Lerdahl 2001). Compared to similar work
in the same field (Narmour 1992; Margulis 2005),
Lerdahl’s research in cognitive theory addresses
in detail the concepts of stability and tension.
Although Lerdahl originally intended this work as a
theoretical means of deciphering relative stability,
Nattiez (1997) described these formulas as unproven
and bearing limited usability as an analytical tool. It
has been shown more recently, however, that these
formulas can be used effectively in a generative
and interactive manner (Farbood 2006; Lerdahl and
Krumhansl 2007).

Our implementation is based on Lerdahl’s anal-
ysis of voice leading, which depends on two major
components: anchoring strength and relative note
distance. The concept of anchoring strength main-
tains that, given a certain pitch space value, there
remain areas of greater and lesser attraction.

Our algorithm uses the input harmony to de-
termine the anchoring-strength pitch space values.
The 0 value in Table 1 represents the root of any
harmony, 11 represents its leading tone, and values
1 through 10 correspond to the ten notes in between.
The values 0, 4, and 7 have the strongest anchoring
strength, and these pitch classes correspond to the
tones of a major triad. The anchoring strength of
each pitch class directly affects its probability of
being chosen as the next pitch.

Our system depends on generating the probability
for any possible next note provided the previous
note. It also derives the probability for any given
note to sound an octave above or below the previous
note. Given a certain harmony, we wanted a unique
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Table 1. Anchoring-Strength Table for Computing the Attraction Between Pitches

Strength Basic Pitch Space (0 = tonic, 11 = leading tone. . . )

4 0
3 0 4 7
2 0 2 4 5 7 9 11
1 0 1 2 3 4 5 6 7 8 9 10 11

Table 2. Relative Note Distance

G� G A� A B� B C C� D D� E F F�

7 6 5 4 3 2 1 2 3 4 5 6 7

anchoring-strength set within two octaves and, as
such, we extended Lerdah’s single octave anchoring-
strength set, Table 1, to 24 columns. We extended
it by adding columns left of 0, therefore providing
an anchoring set one octave below any tone. This
adjustment extended the opportunity for more
precise manipulation of the equations.

The other major component of Lerdahl’s voice
leading equation relies on relative note distance. In
terms of our generative algorithm, this measures the
distance between the most recent pitch value and
all prospective pitch values. The center of Table 2
represents the previous pitch—in this example, C.
The relative note distance grows as notes move
farther away from C. This distance inversely affects
the probability of selection as a following note.
(C to C has a distance of 1 to avoid division by 0.)
Accordingly, there is a generative preference towards
smaller melodic intervals.

In Lerdahl’s stability equation for voice leading
(Equation 1), the effect of the next note’s stability
is inversely proportional to the previous note’s
anchoring strength:

S =
(

a2

a1

) (
1
n2

)
, (1)

where a1 and a2 represent the previous and next
note’s anchoring strength, respectively, and n repre-
sents the relative step-size from the previous pitch
to the next pitch. Equation 2 is an altered form of
Equation 1, specialized for generative purposes:

L(P) =
(

a2

a1

)z (
1
ny

)
+ x, (2)

where L(p) represents the likelihood that a given
pitch will occur next, and where the variables’
values lie in these ranges: a1,2: 15–1; z: 2–0; n: 0–12;
y: 1–0.1; x: 10–100; and input tension parameter T
(not shown in equation): 0–1. Responding to critics
(e.g., Nattiez 1997) of Lerdahl’s work, and in an
effort to reach our own subjectively satisfactory
musical results, we decided to experiment with and
manipulate some of the parameters in the formula.
As shown in Equation 2, we added variables x,
y, and z. We mapped these variables to a single
input, T (for tension), to these variables, controlling
whether stable or unstable pitches are more likely
to be generated. The larger this input parameter, the
more likely it is for an unstable pitch to be played.
Changing z controls the influence of anchoring
strength in determining the next pitch. As tension
T increases, z decreases, reducing the likelihood
that strong anchoring pitches will be generated.
Similarly, y affects the impact of the relative step
size. As discussed earlier, theorists have shown
that smaller steps between pitches increase the
perception of stability. As the tension input value
approaches zero, a small pitch step size becomes
more likely, and therefore the output becomes
more stable. Variable x effectively adds noise to the
equation. By raising x, anchoring strength and step
size become relatively less significant in generating
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the next note. This makes unstable pitches more
likely.

We empirically derived the mapping from in-
put tension T to variables x, y, and z. Through
trial, error, and tweaking all three parameters,
we gradually found a range for each value that
intuitively corresponded to the input tension
values. We consider this extension of Lerdahl’s
formula to be a primary contribution of the present
research.

User Study

In an effort to evaluate the effectiveness of the
algorithm in representing various degrees of tension
in real time, we conducted a user study designed
to assess the relationship between algorithmically
generated tension and perceived tension. The user
group included 100 volunteer students pooled from
our university. We presented to each subject 100
four-second excerpts of audio. To account for the
relative effects imposed by the order of the excerpts,
each trial employed a randomized sequence.

To evaluate the influence of these parameters
on perceived tension, we manipulated the register,
density, and instrumentation of the musical ex-
cerpts generated by the algorithm. Knowing how
these other features affect the perception of tension
will allow us, in future revisions of the algorithm,
to normalize across features. Pitch material was
classified as either high- or low-register, as excerpts
contained notes that are exclusively either higher
or lower than C4. Note density was categorized
using average IOI, as either longer or shorter than
750 milliseconds. We subcategorized instrumenta-
tion by sustain and brightness levels. Two of the
instruments were sine-tone generated, one with long
sustain and the other with short sustain. Three other
sampled instruments offered differences in sustain
and brightness, classified as either bright or dark in
timbre. For all combinations of these categories we
generated excerpts at five different tension levels,
with level 5 representing high tension and level 1
representing low tension.

After listening to each clip, listeners indicated
tension using magnitude estimation (Stevens 1975),
where any number may be assigned to represent

Figure 5. Geometric mean
response in perceived
tension as compared to
change in register.

perceived tension. Magnitude estimation provided
a solution to two major concerns. First, in an
assignment system constrained by maximum and
minimum values, the subject limits the range
with the first assignment of either boundary. For
instance, if the maximum permitted value was
10 and the subject indicated 10 for the previous
excerpt yet found the next excerpt even more
tense, they would have no additional range for
expressing this relativity. In order to resolve this
problem, the procedure could have first provided
maximum and minimum examples of tension.
This would impose designer-interpreted conditions
on the subjects, however. On the other hand,
magnitude estimation, and in particular “modulus-
free” magnitude estimation, is used to address these
issues. In order to account for earlier inconsistencies
due to initial ambiguity in the perceived range and
resolution, the first five values of each trial were
discarded.

Working with data from magnitude estimation
that has no consistency in range and boundary
across subjects, we used geometric means, rather
than normal arithmetic means, to represent all of the
available data within an equivalent context across
categories and between subjects. Although the IOI
compared to perceived tension showed only slight
correlation, registration and instrumentation proved
significantly influential towards affecting perceived
tension. Post hoc Tukey-Kramer correction (α =
.05) was used to evaluate and verify significance
across all of the results. As shown in Figure 5, music
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Figure 6. Geometric mean
response in perceived
tension as compared to
changes in
instrumentation.

generated with the same parameters but in a higher
register proved, on average, 24% more tense than
when compared to music in a lower register.

Comparing sine-tone instruments, we found,
as expected, that sustaining notes are perceived
as sounding more tense than shorter, resonating
notes. We hypothesize that as the sustained notes
overlap succeeding notes, they may cause beating,
and therefore a more distinct sensory dissonance.
Additionally, we found that brighter instruments, as
shown in Figure 6 (right), appeared more tense than
darker instruments. This finding is supported by ex-
isting research in sensory dissonance, with brighter
sounds having more/stronger high-frequency har-
monics beating against each other (Helmholtz 1954
[1885]; Plomp 1964; Hutchinson and Knopoff 1978;
Vassilakis and Fitz 2007). In our sonification appli-
cation, each fish species maps to a different musical
instrument. For instance, we represent Yellow
Tang with rich string sounds and the smaller Blue
Chromis with a bright glockenspiel sounds. We aim
to consistently model tension across instrumenta-
tion. In order to normalize across these different
instrumentations, we must model the impact of
each instrument on the perceived tension, as shown
in Figure 6.

In evaluation of the tension control of the al-
gorithm, we compared perceived tension to the
tension input level across all manipulated condi-
tions. Figure 7 shows the results of this analysis,
with a direct, linearly proportionate correlation
(r = 0.98) between the input tension level and
subjectively perceived tension. This correlation
demonstrates a 1:1 relationship between the ten-
sion control of our generative system and the
perceived tension. It also supports the melodic
tension percepts laid out by Lerdahl (2001), and
the effectiveness of our modifications of Lerdahl’s
formulas.

Future Work

Although the current model successfully addressed
our intended goals, this work only lays a foundation
for future work. We want to extend the concept
of musical roles—varying degrees of leading and
supportive roles—to our generative system. Finally,
we want to adapt the algorithm to compensate for
relative changes in tension based on information
gathered from our study.
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Figure 7. Geometric mean
response in perceived
tension, as compared to
change in the input
tension parameter.

Through combinatorial processing of control
parameters, we also hope to further explore the full
range of the system’s possible generative outputs.
From this study we will define distinct character-
istics of the music output that result from certain
input parameters. We can classify these character-
istics as certain musical roles. For instance, pa-
rameters limiting movement only to leaps between
chord tones would most likely yield a supportive
role, whereas increasing the likelihood of stepwise
movement and non-harmonic tones may result in
a more melodic and prominent lead role. Extending
this to sonification, we may orchestrate the musical
output, as salient moving objects (brightly colored
fish) will be assigned melodic lead roles, and less
prominent objects (less noticeable fish) are assigned
background roles of harmonic support.

In our user study we found a positive correlation
between register and perceived tension. We also
found that the choice of sounds (what we have
called instrumentation) affected perceived tension.
Specifically, brightness of timbre correlated with
perceived tension, as did duration. Based on these
data, we can adjust our current model to compensate
for variations in instrumentation and register. This

will provide a controlled method for manipulating
musical tension across varying features.

Examples of study stimuli and aquarium
sonification videos can be found online at
gtcmt.coa.gatech.edu/tension examples.
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