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Introduction
Our work in robotic musicianship aims to facilitate meaningful and inspiring 
musical interactions between humans and robots. The motivation for our research 
is to discover how robotic collaborators can enhance and enrich musical experi-
ences for humans. Robotics allows us to explore and achieve new musical pos-
sibilities, by combining computer generation with physical sound and embodied 
agents. In addition to rich acoustic sounds, robotic musicians can provide intuitive 
visual cues that improve musical interaction through expressive physical accom-
paniment to sonic generation. Our work is also driven by the artistic potential of 
mechanomorphic approaches, such as humanly impossible speed and precision, 
and the possibility to surprise and inspire human collaborators through artificial 
constructs and algorithms.

Over the last few years, developments in robotics and AI have led to new 
societal and ethical considerations that inform our work. Similar considerations 
have started to be explored in broader functional AI and robotic research, and 
we believe they have not been adequately addressed in creative work. In this 
paper, we examine a number of ethical considerations for the field of musical AI 
and robotic musicianship, where artificial intelligence and creativity are embod-
ied in agents to create novel musical experiences. These ethical issues include 
bias and lack of diversity in data selection, prohibitive training requirements and 
subsequent environmental impacts, and the exclusion of artists without adequate 
computational resources. Other challenges include the impact of AI on human 
agency and employment, and the ownership of material and training data. Moreo-
ver, deep learning networks tend to have a distinct lack of transparency in system 
design, which decreases any chance of interpretability to developers, musicians, 
and listeners. We have considered these ethical consideration through our work in 
robotic musicianship and have developed new approaches to address ethical and 
societal concerns.

In the second half of the chapter, we present a new, human-focused deep learn-
ing system designed to address some of these ethical considerations by allow-
ing participants agency over interaction and generation. The system is simple, 
easy to train, and allows for efficient, interactive real-time generation of musical 
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improvisations in performance with human musicians. It is comprised of a gen-
erative, convolutional neural network using a novel data format that appears to 
allow improved learning of nonlocal dependencies and repetitive structure across 
beats within musical phrases. We have observed that the system is able to learn to 
generate convincing and coherent improvisations from relatively small amounts 
of data. It can run effectively with limited computational resources, minimizing 
environmental impacts, and produces convincing musical interactions in a live 
performance setting.

Robotic Musicianship and Ethics
It is common for researchers in artificial intelligence and music to ignore the 
potential societal implications of their work (Briot et al., 2017). To address this 
lack of consideration, we have investigated our own work in robotic musicianship 
in an effort to identify potential ethical and societal challenges. In the passages 
that follow, we describe some of these challenges and our efforts to address and 
reconcile them.

Human Agency and Employment

One of the main recent societal concerns has been the replacement of human 
agency and employment by AI and robotics (Vochozka et al., 2018). In our own 
work on musical AI and robotic musicianship, we have constantly questioned 
whether our approaches might replace, rather than enhance, human musicians. 
To maximise enhancement over replacement potential, we centred our work on 
human-robot collaboration, rejecting project ideas that did not have a strong 
human presence in the loop. We design our robots to highlight their unique artifi-
cial advantages, such as novel, algorithmic-driven music generation and humanly 
impossibly mechanical abilities. Human collaborators, on their part, bring their 
unique human advantages to each interaction, such as emotion, expressivity, 
and creativity. Our ultimate goal is to facilitate musical experiences that would 
inspire and surprise human musicians, allowing them not only to explore new and 
exciting music but also to think about music in new ways. We believe that our 
human-centred design would not lend itself easily for replacing human agency 
and employment, not only by our team but also by others who may be building on 
our work in the future.

Bias, Diversity, and Accessibility

Significant concerns about bias and discrimination in AI and machine learning 
stem from inherited prejudices in dataset creation and selection as well as human 
algorithmic decisions (Gomez et al., 2018). It is difficult to dismantle such biases, 
as these systems’ inner workings are often not transparent even to their creators 
(Barocas  & Selbst, 2016). An added challenge to diversity in AI is the poten-
tial restriction of use and development of systems due to financial and technical 
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impositions. This might lead to broadening the gap between the have and the 
have-not, preventing a wide social adoption of AI and its benefits.

In our work in music and AI, we have explored several approaches to address 
these issues. For example, we have made an effort to collect and create datasets of 
works by underrepresented minorities addressing both gender and race, including 
datasets for music and lyrics in genres such as jazz and hip-hop. We also adapted 
and personalised our systems to allow for a wide range of users to participate in 
the interaction. Most of our systems can rapidly adapt to new datasets and allow 
for easy individual iteration when needed. Creating systems that are portable to a 
variety of operating systems is another effort we are making to allow users with 
limited hardware capabilities to engage with our systems. While our robots are not 
affordable for wide populations, we aim to include shareable software versions 
that can operate on many computer systems. We have also been as transparent as 
possible regarding the inner workings of our design, while acknowledging that 
some of the technical aspects might still be perceived as black boxes to our users, 
participants, and audiences.

Data Copyright and Consent

Copyright law around AI is rapidly evolving, addressing a variety of perspectives 
and stakeholders. For music generation, the key issues stem from potential owner-
ship claims from music dataset creators, developers of the AI system, and poten-
tial users of the system. Sturm et al. (Sturm et al., 2019) address these copyright 
issues, current legal status, and the potential future legal implications, reaching 
the conclusion that a fundamental rethinking of these topics is needed. One of the 
main open questions in that regard is who owns the product of a creative AI sys-
tem – the dataset creators, the system designers, the public, or maybe the machine 
itself? Leading AI companies such as OpenAI (a company with a mission state-
ment built on AI benefiting all humanity) argue that IP should be free to use for 
AI, with training constituting fair use (O’Keefe et al., 2019).

In our own work, we have striven to receive explicit consent from the creators 
of the data we use. It is up for debate, however, whether in some cases, the goals 
of the system and the nature of creative development might not allow for receiv-
ing full consent from creators (Tinker & Coomber, 2004). We believe that consent 
should be asked for and received whenever possible. We have used this approach 
in multiple systems (Savery et  al., 2021a, 2019b), where we manually created 
datasets. For some of our systems, which relied on extremely large datasets, we 
have not come up yet with a realistic way to ask and receive consent from all 
contributors.

Cultural Misuse

New developments in music and AI may be less susceptible to misuse by govern-
ments and corporations in comparison to technologies such as facial recognition 



Robotics  55

or behavioural data analytics. However, it is important to note that due to the 
strong cultural significance of arts and music, the unethical utilisation of AI in 
music might lead to serious societal consequences. Research in ethnomusicol-
ogy offers many perspectives on approaches to ethical consideration of music 
as a cultural artefact (Shelemay, 2013). Philosopher Appiah extends that to say 
that the value of human life means ‘valuing the practices and beliefs that lend 
them significance’ (Appiah, 2008), such as music. The possibility and implication 
of devaluing a musical tradition has been explored by some research in AI and 
music, which, while subjective, is felt by many communities (Sturm et al., 2019).

In our own work, we have integrated culturally relevant datasets, such as an 
Australian Aboriginal language, with robotic voice (Savery et al., 2019a). These 
datasets were public domain and encouraged for use by the creator as a way to 
share the sound of the language. Even so, it is not clear that the creators of the 
dataset from the late nineties could predict this ‘future use’ case. Additionally, 
while the creator of the dataset gave permission, the language and substance of the 
dataset are a component and representation of the cultural identity of a larger pop-
ulation, which needs to be considered. Moreover, we recognise that our efforts to 
address bias and diversity by focusing on genres such as hip-hop and jazz should 
be done in collaboration with and consultation by members of the relevant com-
munities to prevent cultural appropriation of these genres.

Music is a deeply personal medium central to the human experience, with 
implications beyond just commercial use. Clarke et al. demonstrate that even the 
act of passive listening to music can significantly change the cultural attitude of 
listeners (Clarke et  al., 2015). We believe that it is crucial that future work in 
music and AI consider the outcome and possible influence of created systems.

Public Perception and Presentation

Musicians have been showing a wide range of responses to musical AI, some 
describing the integration of AI into music as a welcome collaborative develop-
ment, while others address the combination as an existential threat (Knotts & 
Collins, 2020). In our own work, listeners have also questioned the use of AI as 
potentially reducing the essential quality of music, with some survey respondents 
providing quotes such as, ‘It removes the inherent skill of a creator. To close ones 
eyes, and dig into one’s own musical vocabulary, and come up with something 
original and tailor made’ (Savery  & Weinberg, 2018). We have also received 
informal feedback from audiences in our concerts and presentations, questioning 
a wide variety of topics – from whether our robots can indeed play in the style 
of humans to the possible ethical implication of even calling our robots ‘musi-
cians.’ While it is inviting to dismiss these claims as common responses to the 
introduction of new technology, they should be given consideration in future 
work. We, therefore, make a deliberate effort to fine-tune our message to the 
public, avoiding overstatements and becoming extra sensitive to public concerns 
about our work.
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Environmental Impact

One of the most important societal concerns for humanity today is climate change. 
Every action we take as a society and as individuals needs to address the poten-
tial environmental impact. The creation and development of AI systems has a 
significant environmental cost, especially in the training process. The training of 
one deep learning model has the carbon cost of 315 flights from New York to San 
Francisco (Strubell et al., 2019).

We believe one of the best ways to consider our impact is to factor efficiency 
as a key component in system design, as has been proposed by Schwartz et al. 
(Schwartz et  al., 2019). This would mean that a bigger network that performs 
slightly better is worse than a more efficient network with slightly reduced perfor-
mance. In the system presented in this paper, we extend this principle by placing 
efficiency as a primary goal and design constraint.

Overview of Robotic Musicianship at GTCMT
The Robotic Musicianship Lab at the Georgia Tech Center for Music Technology 
has developed multiple robotic platforms, including Shimon, Shimi, Haile, and 
multiple drumming prostheses. The first robotic musician was Haile, a percus-
sionist robot designed to play a Native American powwow drum. Constructed 
from plywood, it used a solenoid to actuate one of the drumming arms and a 
linear motor to actuate the other. Shimon was the next robotic platform, designed 
to play the marimba and to provide visual cues with their social head. Shimon 
was also the first robotic musician to utilise artificial vision, and in 2019, it was 
transformed into a singing robot, recording and releasing an album of computer-
generated songs and hip-hop freestyle. The third robot was Shimi, a table-top 
musical companion, designed to function as a musical social robot. We have also 
developed two primary robotic prostheses for amputees – a wearable drumming 
arm and a piano-playing arm, and a wearable drumming arm for general-purpose 
use. In addition to the hardware platforms, we also developed five key design 
principles to guide our research: listen like a human, play like a machine, be 
social, watch and learn, and wear it.

The first principle – listen like a human – relates to the way robots perceive 
music. This principle focuses on computational modelling of musical perception, 
with the goal of allowing robots to interpret music similarly to humans. Listen-
ing like a human requires the ability to recognise musical features, such as beat, 
similarity, tension, and release. Perceptual modelling of human input is crucial for 
meaningful interaction and collaboration as it allows robotic musicians to develop 
an internal model of human ensemble members’ expressive, emotional, and musi-
cal creations.

Playing like a machine focuses on our mechanomorphic goal of develop-
ing novel musical outcomes not possible for human collaborators. We achieve 
this through hardware and software innovations focused on new techniques for 
musicianship. In terms of new hardware, this can involve the implementation of 
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brushless DC motors, allowing marimba playing at forty notes per second across 
eight mallets, creating new timbre, and allowing for new composition styles (Yang 
et al., 2020). We also incorporate software design that is built around mechano-
morphic design and consider implementations of systems that offer nonhuman 
interactions, without an end goal of sounding like a human or passing a Turing 
test. This includes projects like Shimon the Rapper (Savery et  al., 2020b), a 
robotic hip-hop system that develops new musical outcomes for human and robot 
performance. By combining both novel software and hardware development, our 
robotic musicians create innovative musical responses that push musical experi-
ences and outcomes to uncharted domains.

Robotic platforms and embodied agents allow for social interactions not possi-
ble with computer interactive music systems, leading to the third design principle –  
be social. Interaction with gestures can significantly affect the musical experi-
ence, increasing the social engagement and leading to more fluent turn-taking 
(Hoffman & Weinberg, 2010). Each of our robotic platforms uses physical move-
ments for visual choreography to add to the aesthetic impression for audience and 
performers. In particular, the percussion robot Haile was used to study the effect 
of ancillary gestures on co-player anticipation and audience engagement and to 
explore the subjects’ perception of the robot and the music it generates (Weinberg 
et al., 2006). We have also used musical robotic platforms to develop new forms 
of interaction for nonmusician interactions, such as new methods for social robots 
to speak (Savery et al., 2020a).

Our robotic platforms also use artificial vision to watch and learn from human 
collaborators. In the music-making process, visual connection is key to taking 
advantage of social gestures and creating music as an ensemble. Musical gestures 
can act as cues to synchronise music and anticipate other musicians’ future deci-
sions. This work has been covered in many performances, from responding to 
guitar cue synchronisation to real-time detection of emotion and film analysis for 
live movie composition (Savery & Weinberg, 2018).

Our final robotic design principle – wear it – involves potential application as 
prosthetics to allow musicians with disabilities to enhance their performance abil-
ity, merging their biological body with technological enhancements. The current 
frontier of robotic musicianship research at Georgia Tech focuses on the develop-
ment of wearable robotic limbs that allow not only amputees but also able-bodied 
people to play music like no human can, with virtuosity and technical abilities that 
are humanly impossible. This research is currently developing platforms for drum 
and piano performance.

Convnet
In the following section, we describe a new system designed to address many 
of our ethical goals, while exploring new areas of research in robotic musician-
ship. In previous work, we have not used real-time machine learning interaction, 
rather generated offline sequences before a performance. Many of the ethical 
goals align well with the development of a real-time system, such as portability 
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and low environmental impact. Real-time generation also increases the agency of 
the human performer, allowing much greater control over the performance as a 
whole.

A crucial ethical and design choice for the system was the use of data, with the 
goal of being trainable on a small dataset. A small dataset reduces training time 
and environmental impact while allowing more flexibility and future variation. 
Our system trains only on data given by the performer before a concert, requiring 
about an hour of recording. This allows us to ensure we can always have consent 
for the data used and allow human agency over the style that is created by the 
system. By allowing the user to supply their own data, we also hope to prevent 
bias from broader datasets that may act against the performer using the system. 
Custom datasets also increase the personalisation of the system to each user. 
Transparency is still a challenge from a technical perspective, although showing 
performers the training and exact data used helps develop an understanding of 
how ideas are being created.

The system was developed for interaction with expert performers, aiming to 
build off their musical vocabulary. We choose to allow for call and response and 
dialogue-like interaction where an improviser plays a phrase to which Shimon 
responds, creating a constant musical communication. These interactions can take 
place in strict four-bar trades or open, free-form exchanges. While implementa-
tion in Shimon was the primary goal, the system allows for software interaction 
using just a virtual instrument. The generative system combines a convolutional 
neural network (ConvNet) built-in Tensorflow 2.0 with Python and a MaxMSP 
patch which communicate using OSC. Figure 6.1 shows a system overview where 
the MaxMSP patch receives a monophonic instrument, converting it into sym-
bolic data, and sends it to a U-Net-inspired ConvNet, which generates and returns 
new melodies.
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Figure 6.1  System diagram.
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Considering the environmental implications, we believe it is useful for these 
systems to note their environmental impact. For our system, each training run uses 
0.16 kg CO2 eq. (Lacoste et al., 2019), calculated based on training in an Nvidia 
1080 GPU. Through iteration and testing, we trained the system eight times in 
total.

Interaction

There are two main forms of interaction available, either trading fours or free-
form response. Both forms of interaction use the same model for processing but 
feature slightly different input and output methods. The system allows a MIDI 
keyboard or audio from a monophonic instrument for interaction; for an audio file, 
the notes are translated into MIDI values. For trading fours, Shimon listens to and 
processes the input for four bars and then generates an output for the following 
four bars. Before trading fours, a tempo is set, between 60 BPM and 180 BPM, 
with Shimon analysing the audio input at twenty-four samples per beat, allowing 
the system to learn triplet subdivisions. During the input cycle, a list of 384 notes 
is recorded, which is sent to the generation model. The model then returns a 384 
list back, which is played as the melodic response.

The method for free interaction is more complicated and allows for much more 
variety from the performer. In this style of interaction, Shimon and the human 
improviser can choose to respond at any time. Shimon constantly listens to and 
stores the input from the human improviser, even while Shimon is playing. By 
constantly listening and processing the input, Shimon is able to respond back to 
the improviser at any time. To allow the recorded input to fit the 384 grid required 
by the system, Shimon has the ability to stretch or reduce the input sequence. In 
the trading fours version, each 384 value sequence can represent a length of 4.8 
seconds (four bars at 180 BPM) to 16 seconds (four bars at 60 BPM). For the free 
version, we aim to keep the length of phrase in this range, but inputs often slightly 
vary. Variable-length input-and-output capability is achieved via a stretch-and-
shift process, wherein an input melody less than four bars long is stretched tempo-
rally to fit across four bars, and its corresponding output is compressed and shifted 
back to the input’s original time span and temporal location.

Shimon chooses when to respond based on three possibilities, either after two 
seconds of silence from the input stream, after twelve-second intervals, or with 
random interjection. Each second, there is a 10% chance of random interjection, 
where Shimon responds based on the most current input. In early experiments, we 
allowed longer silences; however, we have found that extended silences and gaps 
from computer performers can increase uncertainty from human collaborators.

Dataset

A key component of the system is the data representation and processing through 
the system. Both the trading fours and free interaction provide the model with a 
384-length vector of MIDI note values. This vector is then converted to a 24×16 
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matrix, which is processed by the model. This novel data format arranges beats 
in a column such that time steps relative to the beginning of each beat are stacked 
on top of one another. This reshaping allows the model to learn relatively coher-
ent musical structure and discover temporal dependencies within a phrase. We 
believe that the use of this data format is significant in the resulting musical coher-
ency of this system.

We have trained the system on three datasets, for three different performances. 
Each performance used a dataset created by the performer specifically for the 
concert. We have currently worked with pianist and Hollywood composer Kris 
Bowers, pianist and Danish composer Signe Bisgaard, and vocalist Mary Carter. 
Each dataset consists of approximately 1,600 measures, which is fifty choruses 
of thirty-two bars recorded as MIDI data. In the future, we may allow for audio 
datasets that we then convert to MIDI, but currently all performers have played 
MIDI devices. For improvisers, recording the dataset requires about an hour of 
improvisation.

From tests using our own datasets, we developed multiple guidelines for the 
creation of the dataset. Firstly, the improvisations should be done with a click; 
however, the click can change to any range of tempos between 60 BPM and 
180 BPM during the session. The recordings don’t need to be quantised to the 
click, but the click should be a point of reference for the improvisations. The 
dataset works best if it is in a clearly defined style so should be based around 
the musical language that may be employed within a single improvisation and 
not cover a range of styles. Finally, we encouraged the improvisers to not worry 
about the improvisation being perfect, instead asking them to record continuously 
without deleting any material. Each version of our system is only trained on the 
improviser, who will be performing with the system.

After collecting the dataset, we then transpose each one up and down six chro-
matic steps to create a version of each improvisation in every key. This allows the 
improvisation to be independent of any key signature and is considered standard 
practice. To generate the call-and-response dataset, we then split the data into 
call (X) and response (Y), by taking four bars as the call and the following four 
as the response. These then overlap, so the first response then becomes a call that 
uses the next four as a response.

Model Architecture

Our data representation was built around our model choice of a convolutional 
network (ConvNet). ConvNets have had wide success in image- and video-related 
tasks (Khan et al., 2020). While less common in symbolic music generation tasks, 
ConvNets have been widely used for audio generation in WaveNet (Oord et al., 
2016) and some music-generation tasks (Yang et al., 2017). From our experience, 
we found that for the short responses this system generates, a sequence-based 
model such as a recurrent neural network does not necessarily perform better and 
is prone to overfitting on small datasets.
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The ConvNet model is based on U-Net (Ronneberger et al., 2015) and com-
prises a symmetrical encoder-decoder architecture in which the outputs of encod-
ing layers are appended to the inputs of corresponding decoding layers. It uses the 
384 vector as both input and output to the system. U-Net was originally developed 
for biomedical image segmentation and designed to work on limited training data-
sets, with very fast generation times. It is distinct from other ConvNet models as it 
returns an output of the same size as input and essentially performs a classification 
on every value from the input.

Embodiment

The interactive system described to this point can function as either a software 
system or embedded in a robot. Our end goal is always to have generations per-
formed by robot; however, for this system we also maintained a software-only 
version to allow any potential performer to interact and allow for users to test the 
improvisation on their own computers. The software system follows Figure 6.1 
with the output sent as MIDI to a software instrument. MIDI is created from the 
384-vector list by connecting repeating numbers to create longer notes.

For the robotic performance with Shimon, we use our standard path-planning 
algorithm to turn the generation into something playable for Shimon. Shimon has 
four arms, with two mallets on each arm, that move linearly across a marimba but 
cannot cross over each other. Therefore, to reach different areas of the marimba 
requires careful path planning to avoid collisions. Our path-planning system uses 
a greedy algorithm to choose the most appropriate arm to play each note. For the 
robot-played version, we also use a stochastic, rule-based system to add extra 
embellishments in the form of tremolos. Tremolos are occasionally triggered on 
sustained generated notes, often at top speed and at times using syncopated, fast 
rhythms.

In addition to path planning, each interaction with Shimon requires head and 
body gestures to enhance the engagement for coplayers and audiences. For this 
system, we repurposed many of Shimon’s standard gestures. These gestures 
include looking at the performer that is playing with Shimon, looking towards 
the marimba, and looking at the audience. These are interwoven with a robotic 
breathing gesture and moving to the pulse of the music.

Evaluation

Method

The usefulness and challenges of evaluating creative AI generation systems has 
been widely researched, although there is no single accepted practice (Sturm 
et al., 2019). For an interactive robotic system, a Turing test, where the computer 
system attempts to convince a viewer it is human, is not a relevant approach. 
There is also the argument that applying a Turing test to music generation is not 
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appropriate, as these systems are not designed explicitly to trick a human listener 
(Agres et al., 2016).

For this paper, we chose to base our evaluation on a repurposing of Boden’s 
framework for computational creativity (Boden, 2009). This framework has been 
used previously for narrative rating (Riedl & Young, 2010) and in our own work 
on lyric generation (Savery et al., 2021b). Part of Boden’s framework proposes 
that creativity is a combination of novelty and originality, expressiveness, and 
coherence. Boden further describes that the balance between coherent output and 
novelty is part of what defines the creativity of a work. We contend that these met-
rics further extend to the idea that in order to keep human collaborators curious 
and engaged, the system has to strike a balance between novelty and coherence. 
For our study we gathered metrics for originality, expressivity, coherence, and the 
overall quality rating for both the human and robot performer.

We developed one primary research question to evaluate the system: in an 
ensemble performance, can an improvising robot display similar levels of creativ-
ity as defined within Boden’s framework? Our hypothesis was that Shimon and a 
human improviser would not have a significant difference in results. In addition 
to this evaluation using Boden’s frameworks, we wished to gather some further 
qualitative data. To do this, we used questions developed by Sturm et al. (Sturm 
et al., 2019) for a live music performance. These questions asked for participants’ 
favourite moments, surprising moments, if listening to a robot changed how they 
listened to the piece, and if they had any general comments.

Participants first read a virtual consent form, signed by entering their partici-
pant ID. This was followed by viewing two videos, each one ninety seconds long, 
of Shimon improvising in concert with a saxophone player in Denmark. The vid-
eos were played in a random order. At random times an attention check was given 
through an audio command in place of the stimuli that asked the participants to 
type a text phrase on the following page. Participants were not able to move back 
through the survey without restarting, which would prevent them from complet-
ing the survey. This caused any participant who missed the attention check to 
either stop the study or type an incorrect phrase, in which case their data was 
discarded. We also timed how long participants viewed the video. We had seven 
participants who were unable to complete the attention check or did not watch 
the complete video. After watching the videos, participants were shown a short 
text excerpt that described coherence and originality in creative work. They then 
answered questions related to Boden’s metrics for the human and robot performer 
and filled out a short text response.

We recruited sixty participants on Mechanical Turk (Mturk), each classified 
as an Mturk master, which indicates a top-rated participant. After removing the 
seven who failed the attention check, we had a total of fifty-three participants. 
Each participant was paid $2 for the ten-minute survey. Participants were based 
predominantly in the USA (n=40), with the remaining participants from India 
(n=13). Seventeen participants identified as female, with the remaining thirty-six 
male. The average age was forty, with a standard deviation of 10.25 and a range 
of eighteen to sixty-four.
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Results

Figure 6.2 shows a box plot of the results. The human and robot were rated very 
similarly across each metric. The means for Shimon were, coherence, 5.11; 
expressivity, 4.3; originality, 5.03; and overall quality, 5.28. The means for the 
human performer were, coherence, 5.51; expressivity, 5.80; originality, 5.05; and 
overall quality, 5.6. We conducted a pairwise t-test on each category and found 
that only expressivity had a significant value (p<0.001), proving our hypothesis 
to be partly correct.

From categorizing the text responses, we developed three main concepts. As 
is common with work in robotics and music, many participants commented posi-
tively on Shimon’s head movements, despite the questions explicitly asking about 
the musical content. Overall, the participants found the gestures effective and a 
significant part of what they noticed in the performance. Participants described 
their favourite part as ‘seeing the robot face move. It looked lifelike and gave it 
personality,’ or when the robot ‘moves its eye.’

The second common thread in the comments was a positive sentiment to the 
robot as a listener who was able to interact in meaningful ways. Participants 
wrote, ‘I like how the robot tried to not interrupt the human and played directly 
with them,’ and ‘I was just impressed at how well the robot was able to “lis-
ten” and reply to the musical patterns before it.’ Multiple participants also felt 
the robot was able to achieve good musical balance in the composition, such as, 
‘I was pleasantly surprised with how well the robot was able to play along with 
the human orchestra. The balance between human and robot was impressive.’

The final concept that arose throughout the comments was the impact of the 
use of a robot. There was no consensus on how having a robot impacted people’s 
perception of the music, with some participants believing a robot made no dif-
ference to their perception, while others found the robot distracting and that it 
detracted from the human’s music. Additionally, some participants thought, ‘It 
was surprising to me that the robot did as well as it did.’ However, one participant 
wrote, ‘I was much more critical of the piece knowing that a robot played a role. 
The robot would have had more extensive knowledge and better motor control 
than the humans, so I judged it more harshly than I would a human.’

Discussion
Our results showed that Shimon performed without significant difference to the 
human performer for coherence, originality, and quality. This is a promising result, 
since an unbalanced response among these parameters could indicate problems. 
For example, an unbalanced high level of originality could relate to high levels 
of randomness and is not necessarily a positive for the system. We found that 
Shimon did perform worse in expressivity, perhaps due to a lack of dynamic and 
expressive ability in the system. It is also possible that from an audience perspec-
tive, an improvising saxophone has more expressive capabilities than a marimba 
sound, or that they found the human’s body movements more expressive.
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As the comments indicated, gestures and robotic body movement were highly 
impactful to an audience. From our experience in concerts, gestures and move-
ments are often the first thing noticed and, by many nonexpert musicians, one of 
the main memories that are taken from a performance. The ability for Shimon to 
look at the musician they are improvising with also encourages an audience to 
listen and notice musical sonic interactions between performers.

Our evaluation framework did not include the ethical goals we set out above. 
We believe that applying our ethical standards continuously through the design 
process framework and our postcreation reflections allows for better future devel-
opment than attempting to incorporate them into a musical viewing experience.

Conclusion
Our system described here has so far been used in three concerts and recordings. 
The videos used for the evaluation were recorded in Denmark with the Aarhus 
Jazz Orchestra, in the concert We, Robots at Musikhuset Aarhus. This perfor-
mance was awarded the Jazz Denmark Prize for ‘the most innovative and creative 
concert experience of the year.’ The system has also been featured in improvisa-
tions with film composer Kris Bowers for the BBC show In the Studio and has 
been used for a concert at the New Museum in New York. Audio and video sam-
ples are available online.1

We believe robotic musicianship offers a paradigm for innovative, new devel-
opments in AI and music. In this paper, we have framed our next stages of devel-
opment around broader ethical goals and contend that these considerations are 
crucial for future musical AI design. From our prototype system, we have shown 
that ethical frameworks can lead to effective musical systems and encourage new 
directions for AI and music.

Note
	1	 https://richardsavery.com/project/shimonplays.
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